upvd

LAboratoire de Mathématiques et de PhySique
Modélisation, Analyse, Calcul et Optimisation (MACO)

Articles dans revues internationales




2016 2015


Année 2017


D. Azé and J.-N. Corvellec,
Nonlinear error bounds via a change of function,
Journal of Optimization Theory and Applications 172 (2017), 9-32, doi: 10.1007/s10957-016-1001-3

M. Barboteu, K. Bartosz and W. Han,
Numerical Analysis of an Evolutionary Variational--Hemivariational Inequality with Application in Contact Mechanics.
to appear in Computer Methods in Applied Mechanics and Engineering.

K. Bartosz and M. Sofonea
Modelling and Analysis of a Contact Problem for a Viscoelastic rod,
Journal of Applied Mathematics and Physics (ZAMP) (2016), doi: 10.1007/s00033-016-0718-z, à paraître

A. Benraouda and M. Sofonea
Convergence Results for Elliptic Quasivariational, Inequalities,
Journal of Applied Mathematics and Physics (ZAMP), doi: 10.1007/s00033-016-0750-z, à paraître

A. Benraouda and M. Sofonea
A Convergence Result for History-dependent Quasivariational Inequalities,
Applicable Analysis (2016), doi: http://dx.doi.org/10.1080/00036811.2016.1236920, à paraître (+).

W. Han, M Barboteu and M Sofonea
Numerical Analysis of Elliptic Hemivariational Inequalities,
SIAM Journal of  Numerical Analysis, à paraître

A. Matei and M. Sofonea
A Mixed Variational Formulation for  a  Piezoelectric Frictional Contact Problem,
IMA Journal Applied Mathematics , doi:10.1093/imamat/hxw052, à paraître

S. Migórski, A. Ochal  and M. Sofonea
A Class of Variational-Hemivariational Inequalities in Reflexive Banach Spaces,
Journal of Elasticity (2016), doi: 10.1007/s10659-016-9600-7, à paraître.

D. Motreanu and M. Tanaka,
Existence of positive solutions for nonlinear elliptic equations with convection terms,
Nonlinear Analysis 152 (2017), 38-60, doi: 10.1016/j.na.2016.12.011

M. Sofonea and K. Bartosz
A Dynamic Contact Model for  Viscoelastic Plates,
Quarterly Journal of Mechanics and Applied Mathematics (2016),  doi:10.1093/qjmam/hbw013, à paraître.

M. Sofonea and A. Benseghir
A Nonlinear History-dependent  Boundary Value Problem,
Quarterly of Applied Mathematics 75 (2017), 181-199, doi: 10.1090/qam/1456.

O.I Traore, L. Pantera, N. Favretto-Cristini, P. Cristini, S. Viguier-Pla and P. Vieu,
Structure analysis and denoising using Singular Spectrum Analysis: application to acoustic emission signals from nuclear safety experiments,
Measurement, Journal of the International Measurement Confederation (IMEKO), à paraître

Retour haut de page

Année 2016

S. Abide , M. Barboteu and D. Danan, 
Analysis of two active set type methods to solve unilateral contact problems,
Applied Mathematics and Computation, Vol. 284 (2016) 286--307, http://dx.doi.org/10.1016/j.amc.2016.03.012.

D. Averna, D. Motreanu and E. Tornatore,
Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence,
Appl. Math. Lett. 61 (2016), 102-107, doi: 10.1016/j.aml.2016.05.009

M. Barboteu, X. Cheng and M. Sofonea
Analysis of a Contact Problem with Unilateral Constraint and Slip-dependent Friction,
Mathematics and Mechanics of Solids 21 (2016), 791-811, doi: 10.1177/1081286514537289

M. Barboteu and D. Danan, Analysis of a Dynamic Viscoelastic Contact
Problem with Normal Compliance, Normal Damped Response and Nonmonotone Slip Rate Dependent Friction,
Advances in Mathematical Physics, Volume 2016, Article ID 1562509, 15 pages, http://dx.doi.org/10.1155/2016/1562509.

M. Barboteu,  D. Danan and M. Sofonea,
A Hyperelastic Dynamic Frictional Contact Model with Energy-Consistent Properties,
In Advances in Variational and Hemivariational Inequalities, edited by Weimin Han, Stanisław Migórski, and Mircea Sofonea,
33:249–75. Cham: Springer International Publishing, 2015 ; http://link.springer.com/10.1007/978-3-319-14490-0_10.

M. Barboteu, D. Danan and M. Sofonea,
Analysis of a Contact Problem with Normal Damped Response and Unilateral Constraint,,
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 96 (4),
408-428, May 2015 ; doi:10.1002/zamm.201400304.

M. Barboteu, W. Han and M. Sofonea
Numerical Solution of a Contact Problem with Unilateral Constraint and History-dependent Penetration,
Journal of Engineering Mathematics, 97 (2016), 177-194, doi: 10.1007/s10665-015-9804-z

K. Bartosz, P. Kalita, S. Migórski, A. Ochal and M. Sofonea
History-Dependent Problems with Applications to Contact Models for Elastic Beams
Applied Mathematics & Optimization 73, (2016) 71-98, doi: 10.1007/s00245-015-9292-6

K. Bartosz and M. Sofonea
The Rothe Method for Variational-HemivariationalInequalities with applications to Contact Mechanics,
SIAM Journal of  Mathematical Analysis 48 (2016), 861-883, doi: 10.1137/151005610.

K. Bartosz, P. Kalita, S. Migórski, A. Ochal, and M. Sofonea,
History-Dependent Problems with Applications to Contact Models for Elastic Beams,
Applied Mathematics & Optimization 73 (2016), 71-98, doi:10.1007/s00245-015-9292-6.

A. Benseghir and M. Sofonea
An Evolutionary Boundary Value Problem,
Mediteranean Journal of Mathematics 13 (2016), 4463-4480, doi: 10.1007/s00009-016-0756-y.

G. Bonanno, P. Candito et D. Motreanu,
A coincidence point theorem for sequentially continuous mappings,
J. Math. Anal. Appl. 435 (2016), 606--615. doi: 10.1016/j.jmaa.2015.10.039

A. Boudou and S. Viguier-Pla
Gap between orthogonal projectors - Application to stationary processes,
J. Multivariate Anal. 146 (2016), pp. 282-300, http://dx.doi.org/10.1016/j.jmva.2015.10.002

C. Fang, W. Han, S. Migórski and M. Sofonea
A class of hemivariational inequalities for nonstationary Navier-Stokes equations,
Nonlinear Analysis Series B: Real World Applications 31 (2016), 257-276, doi: 10.1016/j.nonrwa.2016.02.005.

G. Fraisse and S. Viguier-Pla
A characterization of real Wishart matrices by quadratic forms,
Cr. Acad. Sci. Paris, Ser. I, 354, 623-627, http://dx.doi.org/10.1016/j.crma.2016.03.011

P. Kalita, S. Migórski and M. Sofonea,
A Class of Subdifferential Inclusions for Elastic Unilateral Contact Problems,
Set-Valued and Variational Analysis 24 (2), 355-379, June 2016 ; doi:10.1007/s11228-015-0346-3.

Z. Liu, S. Zeng and D. Motreanu,
Evolutionary problems driven by variational inequalities,
 J. Differential Equations 260 (2016), 6787--6799, doi : 10.1016/j.jde.2016.01.012

D. Motreanu and M. Tanaka
On a positive solution for $(p,q)$-Laplace equation with indefinite weight,
Minimax Theory Appl. 1 (2016), 1-20.

D. Motreanu, C. Vetro and F. Calogero,
A parametric Dirichlet problem for systems of quasilinear elliptic equations with gradient dependence,
Numer. Funct. Anal. Optim. 37 (2016), 1551--1561, doi: 10.1080/01630563.2016.1219866

M. Sofonea and S. Migórski
A Class of History-dependent Variational-Hemivariational Inequalities,
Nonlinear Differential Equations and Applications 23 (2016) Art. 38, 23 pp., doi: 10.1007/s00030-016-0391-0

M. Sofonea, F. Patrulescu and Y. Souleiman
Analysis of a contact problem with wear and unilateral constraint,
Applicable Analysis 95 (2016), 2602—2619, doi: 10.1080/00036811.2015.1102892

M. Sofonea and Y. Souleiman
Analysis of a Sliding Frictional Contact Problem with Unilateral Constraint,
Mathematics and Mechanics of Solids (2016), doi: 10.1177/1081286515591304, à paraître .

 M. Sofonea and Y. Souleiman
A Viscoelastic Sliding Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term,
Mediteranean Journal of Mathematics 13 (2016), 2863-2886, doi:10.1007/s00009-015-0661-9

M. Sofonea, Y. Xiao
Fully History-dependent Quasivariational Inequalities in Contact Mechanics,
Applicable Analysis 95 (2016), 2464-2484, doi: 10.1080/00036811.2015.1093623

Q. Zhang and D. Motreanu,
Existence and blow-up rate of large solutions of $p(x)$-Laplacian equations with large perturbation and gradient terms,
Adv. Differential Equations 21 (2016), 699-734, https://projecteuclid.org/euclid.ade/1462298655#info


Retour haut de page

Année 2015

E. Amiot,
Can a Musical Scale Have 14 Generators ?,
In Mathematics and Computation in Music, edited by T. Collins, D. Meredith, and A. Volk, 9110:349–60.
Cham: Springer International Publishing, 2015, doi : 10.1007/978-3-319-20603-5_35

E. Amiot and G. Baroin,
Old and New Isometries between Pc Sets in the Planet-4D Model,
Music Theory Online 21, no. 3 (September 2015) ; http://www.mtosmt.org/issues/mto.15.21.3/mto.15.21.3.amiot-baroin.html

D. Azé and J.-N. Corvellec,
Nonlinear Local Error Bounds via a Change of Metric,
Journal of Fixed Point Theory and Applications, March 8, 2015 ; doi:10.1007/s11784-015-0220-9.

M. Barboteu,  K. Bartosz and P. Kalita,
A Dynamic Viscoelastic Contact Problem with Normal Compliance, Finite Penetration and Nonmonotone Slip Rate Dependent Friction,
Nonlinear Analysis: Real World Applications 22 (April 2015): 452–72 ; doi:10.1016/j.nonrwa.2014.08.009

M. Barboteu, K. Bartosz, W. Han and T. Janiczko
Numerical Analysis of a Hyperbolic Hemivariational Inequality Arising in Dynamic Contact.
SIAM Journal on Numerical Analysis 53, no. 1 (January 2015): 527–50. doi:10.1137/140969737.

H. Boualem and R. Brouzet,
To Be (a Circle) or Not to Be?, ,
The college mathematics Journal (2015), vol. 46, no 3, 197-206 ; doi:10.4169/college.math.j.46.3.197

S. Carl and D. Motreanu
Multiple Solutions for Elliptic Systems via Trapping Regions and Related Nonsmooth Potentials
Applicable Analysis 94, no. 8 (August 3, 2015): 1594–1613. doi:10.1080/00036811.2014.940520.

F. Faraci, D. Motreanu and D. Puglisi
Positive Solutions of Quasi-Linear Elliptic Equations with Dependence on the Gradient.
Calculus of Variations and Partial Differential Equations 54, no. 1 (September 2015): 525–38. doi:10.1007/s00526-014-0793-y.

V. Goldshtein, D. Motreanu and V.V. Motreanu
Non-Homogeneous Dirichlet Boundary Value Problems in Weighted Sobolev Spaces.
Complex Variables and Elliptic Equations 60, no. 3 (March 4, 2015): 372–91. doi:10.1080/17476933.2014.936863.

D. Goreac and O.-S. Serea
Abel-Type Results for Controlled Piecewise Deterministic Markov Processes.
Differential Equations and Dynamical Systems, April 9, 2015, 1–18. doi:10.1007/s12591-015-0245-y.

C. Horvath,
Some of Sion’s Heirs and Relatives,
Journal of Fixed Point Theory and Applications, April 5, 2015 ; doi:10.1007/s11784-015-0225-4.

A. A. Khan and D. Motreanu
Existence Theorems for Elliptic and Evolutionary Variational and Quasi-Variational Inequalities.
Journal of Optimization Theory and Applications 167, no. 3 (December 2015): 1136–61. doi:10.1007/s10957-015-0825-6.

Z. Liu, X. Li, and D. Motreanu
Approximate Controllability for Nonlinear Evolution Hemivariational Inequalities in Hilbert Spaces.
SIAM Journal on Control and Optimization 53, no. 5 (January 2015): 3228–44. doi:10.1137/140994058.

S. Migorski, M. Sofonea and A. Ochal,
Evolutionary Inclusions and Hemivariational Inequalities,
In Advances in Variational and Hemivariational Inequalities, edited by Weimin Han, Stanisław Migórski, and Mircea Sofonea,
33:39–64. Cham: Springer International Publishing, 2015 ; http://link.springer.com/10.1007/978-3-319-14490-0_2

S. Migorski, A. Ochal and M. Sofonea ,
History-Dependent Variational–hemivariational Inequalities in Contact Mechanics,
Nonlinear Analysis: Real World Applications 22 (April 2015): 604–618. ; doi:10.1016/j.nonrwa.2014.09.021

A. Ramadan, M. Barboteu, K. Bartosz, and P. Kalita,
A Contact Problem with Normal Compliance, Finite Penetration and Nonmonotone Slip Dependent Friction, 
In Advances in Global Optimization, edited by David Gao, Ning Ruan, and Wenxun Xing, 95:295–303. Cham: Springer International Publishing, 2015 ; http://link.springer.com/10.1007/978-3-319-08377-3_29.

M. Sofonea,
A Class of Mixed Variational Problems with Applications in Contact Mechanics,
In Advances in Global Optimization, edited by David Gao, Ning Ruan, and Wenxun Xing, 95:305–14. Cham: Springer International Publishing, 2015 ; http://link.springer.com/10.1007/978-3-319-08377-3_30.

M. Sofonea, W. Han, and S. Migórski
Numerical Analysis of History-Dependent Variational–hemivariational Inequalities with Applications to Contact Problems
European Journal of Applied Mathematics 26, no. 04 (August 2015), 427–52 ; doi:10.1017/S095679251500011X.

M. Sofonea and A. Matei
A Mixed Variational Problem with Applications in Contact Mechanics
Zeitschrift Für Angewandte Mathematik Und Physik, September 2, 2015 ; doi:10.1007/s00033-015-0573-3

M. Sofonea and A. Matei
History-Dependent Mixed Variational Problems in Contact Mechanics
Journal of Global Optimization 61, no. 3 (March 2015): 591–614 ; doi:10.1007/s10898-014-0193-z.

M. Sofonea, S. Migórski, and A. Ochal
Two History-Dependent Contact Problems
In Advances in Variational and Hemivariational Inequalities, edited by Weimin Han, Stanisław Migórski, and Mircea Sofonea,
 33:355–80. Cham: Springer International Publishing, 2015 ; http://link.springer.com/10.1007/978-3-319-14490-0_14.

M. Sofonea and Y. Souleiman
Analysis of a Sliding Frictional Contact Problem with Unilateral Constraint
Mathematics and Mechanics of Solids,  July 6, 2015 ; doi:10.1177/1081286515591304.

Retour haut de page


Année 2014


D. Azé and J.-N. Corvellec,
Nonlinear local error bounds via a change of metric,
Journal of Fixed Point Theory and Applications 16 (2014), 351-372, doi:10.1007/s11784-015-0220-9

G. Barletta, P. Candito, D. Motreanu,
Constant sign and sign-changing solutions for quasilinear elliptic equations with Neumann boundary condition,
J. Convex Anal. 21 (2014), No. 1, 53-66.

A. Boudou, S. Viguier-Pla
Structure of the random measure associated with an isotropic stationary process,
 J. Multivariate Anal. 123 (2014), pp. 111-128, http://dx.doi.org/10.1016/j.jmva.2013.08.001

M. Boureanu, A. Matei  and  M. Sofonea,
Nonlinear Problems with p-growth Conditions and Applications toAntiplane Contact Models,
Advanced Nonlinear Studies 14 (2014), 295 - 313

L. F. O. Faria, O. H. Miyagaki, D. Motreanu,
Comparison and positive solutions for problems with the (p,q)-Laplacian and a convection term,
Proc. Edinb. Math. Soc. (2), 57 (2014),  no. 3, 687-698, doi:10.1017/S0013091513000576.

L. F. O. Faria, O. H. Miyagaki, D. Motreanu, M. Tanaka,
Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient,
Nonlinear Analysis 96 (2014), 154-166, doi:10.1016/j.na.2013.11.006

S. Migorski, A. Ochal, M. Shillor, M. Sofonea,
A model of a spring-mass-damper system with temperature-dependent friction,
European Journal of Applied Mathematics, 25 (2014), 45-64, doi:10.1017/S0956792513000272.

D. Motreanu, A. Moussaoui,
A quasilinear singular elliptic system without cooperative structure,
Acta Math. Sci. Ser. B 34 (2014), no. 3, 905–916, doi:10.1016/S0252-9602(14)60058-8.

D. Motreanu, V. V. Motreanu,
Elliptic problems with nonhomogeneous boundary condition and derivatives of nonlinear terms,
Boundary Value Problems (2014), 2014:6, doi:10.1186/1687-2770-2014-6

D. Motreanu, M. Tanaka,
Multiple existence results of solutions for quasilinear elliptic equations with a nonlinearity depending on a parameter,
Ann. Mat. Pura Appl. (4), 193 (2014),  no. 5, 1255-1282, doi:10.1007/s10231-013-0327-9.

M. Sofonea, F. Patrulescu,
Penalization of History-Dependent Variational Inequalities,
European Journal of Applied Mathematics 25 (2014),155-176, doi:10.1017/S0956792513000363.

M. Sofonea, F. Patrulescu, A. Farcas,
A viscoplastic contact problem with normal compliance, unilateral constrain and memory term,
Applies Mathematical Optimization 69 (2014), 175-198, doi: 10.1007/s00245-013-9216-2

M. Sofonea, M. Shillor,
A viscoplastic contact problem with a normal compliance
with limited penetration condition and history-dependent stiffness coefficient,
Communications in Pure and Appled Analysis 13 (2014), 371-387, doi:10.3934/cpaa.2014.13.371


Retour haut de page

Année 2013

M. Barboteu, K. Bartosz, P. Kalita, A. Ramadan,
Analysis of a contact problem with normal compliance, finite penetration and nonmonotone slip dependent friction,
Communications in Contemporary Mathematics, Vol. 15, No. 3(2013), doi:10.1142/S0219199713500168

M. Barboteu, D. Danan, M. Sofonea
Modelling and Numerical Simulation of a Unilateral Contact Problem with Slip-dependent Friction,
Machine Dynamics Research 2013 (37) , 15 - 26.

M. Barboteu, F. Patrulescu, A. Ramadan, M. Sofonea,
History-dependent contact models for viscoplastic materials,
IMA Journal of Applied Mathematics (2013), doi: 10.1093/imamat/hxt024

G. Bonanno, D. Motreanu, P. Winkert,
Boundary value problems with  nonsmooth potential, constraints and parameters,
Dynamic Systems and Applications 22 (2013), 385-396

F. Bonnans, L. Pfeiffer, O.-S. Serea,
Sensitivity analysis for relaxed optimal control problems with final-state constraints,
Nonlinear Analysis Series A: Theory, Methods & Applications, (2013), doi: 10.1016/j.na.2013.04.013

J.-N. Corvellec,
Deformation techniques in metric critical point theory,
Advances in Nonlinear Analysis 2 (2013), 65-89, doi:10.1515/anona-2012-0013

D.Goreac, O.-S. Serea,
Min-max control problems via occupational measures,
Optimal Control, Applications and Methods (2013), doi:10.1002/oca.2071

A. Iannizzotto, S. A. Marano & D. Motreanu
Positive, negative, and nodal solutions to elliptic differential inclusions depending on a parameter,
Advanced Nonlinear Studies 13 (2013), 431-445.

S.A. Marano, D. Motreanu, D. Puglisi,
Multiple solutions to a Dirichlet eigenvalue problem with p-Laplacian,
Topological Methods in Nonlinear Analysis 42 (2013), 277-291.

A. Matei, M. Sofonea,
Dual formation of a viscoplastic contact problem with unilateral constraint,
Discrete and Continuous Dynamical Systems Series S 6, n°6 (2013), 1587-1598

S. Migorski, A. Ochal and M. Sofonea,
History-dependent hemivariational inequalities with applications to Contact mechanics,
Annals of the University of Bucharest (mathematical series) LXII (2013), 193-212.

D. Motreanu,
Solvability of a semilinear anisotropic hyperbolic problem,
Dynamic Systems and Applications 22 (2013), 543-556.

D. Motreanu, V. V. Motreanu,
Coercivity properties for sequences of lower semicontinuous functions on metric spaces,
Abstract and Applied Analysis, Vol. 2013, Article ID 268650, doi:10.1155/2013/268650.

D. Motreanu and M. Tanaka,
Generalized eigenvalue problems of  nonhomogeneous elliptic operators and their application,
Pacific J.  Math. 265 (2013), 151-184.

D. Motreanu and A. Moussaoui,
Existence and boundedness of solutions for a singular cooperative quasilinear elliptic system,
Complex Variables and Elliptic Equations, doi:10.1080/17476933.2012.744404

D. Motreanu and M. Tanaka,
Multiple existence results of solutions for quasilinear elliptic equations with a nonlinearity depending on a parameter ,
Annali di Matematica Pura ed Applicata, doi:10.1007/s10231-013-0327-9

F. Patrulescu, A. Farcas and A. Ramadan,
A penalized viscoplastic contact problem with unilateral constraints,
Annals of the University of Bucharest (mathematical series),LXII (2013), 213-227.

M. Sofonea, M. Barboteu, W. Han,
Analysis of a Viscoelastic Contact Problem with Multivalued Normal Compliance and Unilateral Constraint,
Computer Methods in Applied Mechanics and Engineering, doi: 10.1016/j.cma.2013.05.006

M. Sofonea and A. Farcas
Analysis of a history-dependent frictional contact problem,
Applicable Analysis, doi: 10.1080/00036811.2013.778981

M. Sofonea, F. Patrulescu and A. Farcas,
A viscoplastic contact problem with normal compliance, unilateral constrain and memory term,
Applies Mathematical Optimization, doi: 10.1007/s00245-013-9216-2

Retour haut de page

Année 2012

M.Barboteu, A. Matei, M. Sofonea,
Analysis of Quasistatic Viscoplastic contact problems with normal compliance,
The Quarterly Journal of Mechanics and Applied Mathematics, http://dx.doi.org/10.1093/qjmam/hbs016

M. Barboteu, M. Sofonea,
Modelling of piezoelectric contact problems,
In Recent Advances in Contact Mechanics, Ed. G. Stavroulakis, Springer Verlag Berlin, 2012, Chapter 25, 415-431.

M. Barboteu, M. Sofonea, D. Tiba,
The control variational method for beams in contact with deformable obstacles,
Zeitschrift für Angewandte Matematik und Mechanik (ZAMM), 2012, volume 92(1), 25-40.

H. Boualem, R. Brouzet,
Semi-simple Generalized Nijenhuis Operators,
Journal of Geometrics Mechanics, v.4, n°4, décembre 2012, 11 pages, doi:10.3934/jgm.2012.4.385.

H.Boualem, R. Brouzet,
Semi-simple Courant-Nijenhuis structures on the generalized tangent bundle of a smooth manifold soumis en juin 2011
à Indagationes Mathematicae, 21 pages

H. Boualem, R. Brouzet,
On what is the Almost-Near principle,
American Mathematical Monthly 119, 2012, no 5, 381-397

G. Grégoire, F.-X. Jollois, J.-F. Petiot, A. Qannari, S. Sabourin, Ph. Swertwaegher, J.-Ch. Turlot, V. Vandewalle, S. Viguier-Pla
Les logiciels et l’enseignement de la Statistique dans les départements « Statistique et Informatique décisionnelle »
(STID) des IUT, revue de la SFDS, mars 2012      
                  
M.-M. Boureanu, A. Matei, M. Sofonea,
Analysis of a contact problem for electro-elastic-visco plastic materials",
Communications on Pure and Applied Analysis, 2012, Volume 11, 1185-1203.

A. Farcas, F.Patrulescu, M. Sofonea
History-dependent Contact Problem with Unilateral Constraint,
Mathematics and its Applications 2, 2012, 105-111

D.Goreac, O.-S. Serea,
Linearization techniques for controlled piecewise deterministic Markov processes ; application to Zubov's method,
Electron. Commun. Probal., 2012, Volume 17 (12), 1-12, doi:10.1214/ECP.v17-1844.

D. Goreac, O.-S. Serea,
A note on linearization methods and dynamic programming principles for stochastic discontinuous control problems,
Appli. Math. Optim., 2012, doi:10.1007/s00245-012-9169-x.

C. Horvath,
Nash equilibira on topological semilattices,
Journal of Fixed Point Theory and Applications, Birkhäuser,doi:10.1007/s11784-012-0085-0.

K. Kazmi, M. Barboteu, W. Han , M. Sofonea,
A Dynamic Electro-Elastic Problem,
Zeitschrift fur Angewandte Matematik und Mechanik(ZAMM),doi:10.1002/zamm.201200113.

A. Khan and D. Motreanu,
Local minimizers versus X-local minimizers,
Optimization Letters, 2012, doi:10.1007/s11590-012-0474-8.

S. Miyajima, D.Motreanu and M. Tanaka,
Multiple existence results of solutions for the Neumann problems via super-and sub-solutions,
Journal of Functional Analysis, Journal of Functional Analysis 262, 2012, 1921–1953.

S. Migorski, A.Ochal, M. Sofonea
Weak Solvability of Two Quasistatic Viscoelastic Contact Problems Mathematics and Mechanics of Solids,
doi: 10.1177/1081286512448185.

D. Motreanu,
Three solutions with precise sign properties for systems of quasilinear elliptic equations,
Continuous and Discrete Dynamical Systems, Series S 5, 2012, 831-843.

D. Motreanu, V. V. Motreanu and N. S. Papageorgiou,
On resonant Neumann problems,
Mathematische Annalen, 2012, doi:10.1007/s00208-011-0763-z.

D.Motreanu and M. Tanaka,
Generalized eigenvalue problems of nonhomogeneous elliptic operators and their applications,
Pacific Journal of Mathematics, to appear.

D. Motreanu and M. Tanaka,
Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition,
Calculus of Variations and Partial Differential Equations, 43, 2012, 231-264.

D. Motreanu and P. Winkert,
The Fucik Spectrum for the Negative p-Laplacian with Different Boundary Conditions,
Nonlinear Analysis, Chapter 28, 2012, 471-485.

A.Rodriguez-Aros,  J. M. Viano, M. Sofonea,
Asymptotic Analysis of a Quasistatic Frictional Contact Problem with Wear,
Journal of Mathematical Analysis and Applications, doi: 10.1016/j.jmaa.2012.12.064.

Oana Silvia Serea
Optimality conditions for reflecting boundary control problems
Nonlinear Differential Equations and Applications (NoDEA), 2012, 18 pages. http://link.springer.com/article/10.1007%2Fs00030-012-0206-x

M.Sofonea, F. Patrulescu,
Analysis of a history dependent frictionless contact problem,
Mathematics and Mechanics of Solids, 2012, Volume 17, doi:10.1177/1081286512440004.

M. Sofonea, K. Kazmi, M. Barboteu, W. Han,
Analysis and Numerical Solution of a Piezolectric Frictionnal Contact Problem,
Applied Mathematical Modelling 36, 2012, pp 4483-4501.


Retour haut de page





LAMPS

Université de Perpignan Via Domitia - 52 avenue Paul Alduy - 66860 Perpignan Cedex

Téléphone : +33 (0)4 68 66 20 52 - Fax : +33 (0)4 68 66 22 34